Plastic welding is welding for semi-finished plastic materials, and is described in ISO 472 as a process of uniting softened surfaces of materials, generally with the aid of heat (except solvent welding). Welding of thermoplastics is accomplished in three sequential stages, namely surface preparation, application of heat and pressure, and cooling.
Hot gas welding
Hot gas welding, also known as hot air welding, is a plastic welding technique using heat. A specially designed heat gun, called a hot air welder, produces a jet of hot air that softens both the parts to be joined and a plastic filler rod, all of which must be of the same or a very similar plastic. (Welding PVC to acrylic is an exception to this rule.)
Hot air/gas welding is a common fabrication technique for manufacturing smaller items such as chemical tanks, water tanks, heat exchangers, and plumbing fittings.
In the case of webs and films a filler rod may not be used. Two sheets of plastic are heated via a hot gas (or a heating element) and then rolled together. This is a quick welding process and can be performed continuously.
Speed tip welding
With speed welding, the plastic welder, similar to a soldering iron in appearance and wattage, is fitted with a feed tube for the plastic weld rod. The speed tip heats the rod and the substrate, while at the same time it presses the molten weld rod into position. A bead of softened plastic is laid into the joint, and the parts and weld rod fuse. With some types of plastic such as polypropylene, the melted welding rod must be "mixed" with the semi-melted base material being fabricated or repaired. These welding techniques have been improved over time and have been utilized for over 50 years by professional plastic fabricators and repairers internationally. Speed tip welding method is a much faster welding technique and with practice can be used in tight corners. A version of the speed tip "gun" is essentially a soldering iron with a broad, flat tip that can be used to melt the weld joint and filler material to create a bond.
Extrusion welding
Extrusion welding allows the application of bigger welds in a single weld pass. It is the preferred technique for joining material over 6 mm thick. Welding rod is drawn into a miniature hand held plastic extruder, plasticized, and forced out of the extruder against the parts being joined, which are softened with a jet of hot air to allow bonding to take place.
Contact welding
This is the same as spot welding except that heat is supplied with thermal conduction of the pincher tips instead of electrical conduction. Two plastic parts are brought together where heated tips pinch them, melting and joining the parts in the process.
Hot plate welding
Related to contact welding, this technique is used to weld larger parts, or parts that have a complex weld joint geometry. The two parts to be welded are placed in the tooling attached to the two opposing platens of a press. A hot plate, with a shape that matches the weld joint geometry of the parts to be welded, is moved in position between the two parts. The two opposing platens move the parts into contact with the hot plate until the heat softens the interfaces to the melting point of the plastic. When this condition is achieved the hot plate is removed, and the parts are pressed together and held until the weld joint cools and re-solidifies to create a permanent bond.
Hot-plate welding equipment is typically controlled pneumatically, hydraulically, or electrically with servo motors.
This process is used to weld automotive under hood components, automotive interior trim components, medical filtration devices, consumer appliance components, and other car interior components.
High frequency welding
High Frequency welding, also known as Dielectric Sealing or Radio Frequency (R.F.) Heat Sealing is a very mature technology that has been around since the 1940s. High frequency electromagnetic waves in the range of Radio Frequencies can heat certain polymers up to softening the plastics for joining. Heated plastics, under pressure weld together. Heat is generated within the polymer by the rapid reorientation of some chemicals dipoles of the polymer, which means that the heating can be localized, and the process can be continuous.
Induction welding
When an electrical insulator, like a plastic, is embedded with a material having high electrical conductivity, like metals or carbon fibers, induction welding can be performed. The welding apparatus contains an induction coil that is energised with a radio-frequency electric current. This generates an electromagnetic field that acts on either an electrically conductive or a ferromagnetic workpiece. In an electrically conductive workpiece, the main heating effect is resistive heating, which is due to induced currents called eddy currents. Induction welding of carbon fiber reinforced thermoplastic materials is a technology commonly used in for instance the aerospace industry.
In a ferromagnetic workpiece, plastics can be induction-welded by formulating them with metallic or ferromagnetic compounds, called susceptors. These susceptors absorb electromagnetic energy from an induction coil, become hot, and lose their heat energy to the surrounding material by thermal conduction.
Injection welding
Injection welding is similar/identical to extrusion welding, except, using certain tips on the handheld welder, one can insert the tip into plastic defect holes of various sizes and patch them from the inside out. The advantage is that no access is needed to the rear of the defect hole. The alternative is a patch, except that the patch can not be sanded flush with the original surrounding plastic to the same thickness. PE and PP are most suitable for this type of process. The Drader injectiweld is an example of such tool.
Ultrasonic welding
In ultrasonic welding, high frequency (15 kHz to 40 kHz) low amplitude vibration is used to create heat by way of friction between the materials to be joined. The interface of the two parts is specially designed to concentrate the energy for the maximum weld strength. Ultrasonic can be used on almost all plastic material. It is the fastest heat sealing technology available.
Friction welding
In friction welding, the two parts to be assembled are rubbed together at a lower frequency (typically 100–300 Hz) and higher amplitude (typically 1 to 2 mm (0.039 to 0.079 in)) than ultrasonic welding. The friction caused by the motion combined with the clamping pressure between the two parts creates the heat which begins to melt the contact areas between the two parts. At this point, the plasticized materials begin to form layers that intertwine with one another, which therefore results in a strong weld. At the completion of the vibration motion, the parts remain held together until the weld joint cools and the melted plastic re-solidifies. The friction movement can be linear or orbital, and the joint design of the two parts has to allow this movement.
Spin welding
Spin welding is a particular form of frictional welding. With this process, one component with a round weld joint is held stationary, while a mating component is rotated at high speed and pressed against the stationary component. The rotational friction between the two components generates heat. Once the joining surfaces reach a semi-molten state, the spinning component is stopped abruptly. Force on the two components is maintained until the weld joint cools and re-solidifies. This is a common way of producing low- and medium-duty plastic wheels, e.g., for toys, shopping carts, recycling bins, etc. This process is also used to weld various port openings into automotive under hood components.
Laser welding
This technique requires one part to be transmissive to a laser beam and either the other part absorptive or a coating at the interface to be absorptive to the beam. The two parts are put under pressure while the laser beam moves along the joining line. The beam passes through the first part and is absorbed by the other one or the coating to generate enough heat to soften the interface creating a permanent weld.
Semiconductor diode lasers are typically used in plastic welding. Wavelengths in the range of 808 nm to 980 nm can be used to join various plastic material combinations. Power levels from less than 1W to 100W are needed depending on the materials, thickness and desired process speed.\
Solvent welding
In solvent welding, a solvent is applied which can temporarily dissolve the polymer at room temperature. When this occurs, the polymer chains are free to move in the liquid and can mingle with other similarly dissolved chains in the other component. Given sufficient time, the solvent will permeate through the polymer and out into the environment, so that the chains lose their mobility. This leaves a solid mass of entangled polymer chains which constitutes a solvent weld.
This technique is commonly used for connecting PVC and ABS pipe, as in household plumbing. The "gluing" together of plastic (polycarbonate, polystyrene or ABS) models is also a solvent welding process.
No comments:
Post a Comment